Sodium Hydroxide Specific Heat Capacity

  • Formula: HNaO
  • Molecular weight: 39.9971
  • IUPAC Standard InChI:
    • InChI=1S/Na.H2O/h;1H2/q+1;/p-1
    • Download the identifier in a file.
  • IUPAC Standard InChIKey:HEMHJVSKTPXQMS-UHFFFAOYSA-M
  • CAS Registry Number: 1310-73-2
  • Chemical structure:
    This structure is also available as a 2d Mol fileor as a computed3d SD file
    The 3d structure may be viewed usingJavaorJavascript.
  • Species with the same structure:
  • Information on this page:
  • Data at other public NIST sites:
  • Options:

Data at NIST subscription sites:

NIST subscription sites provide data under theNIST Standard ReferenceData Program, but require an annual fee to access.The purpose of the fee is to recover costs associatedwith the development of data collections included insuch sites. Your institution may already be a subscriber.Follow the links above to find out more about the datain these sites and their terms of usage.

Gas phase thermochemistry data

The NaOH module calculates the physical properties of aqueous sodium hydroxide solutions in the temperature range from 20 °C to 100 °C and in the concentration range from 0 to 50 Ma-% NaOH. The following physical properties are calculated: Density; Specific heat capacity; Thermal conductivity; Dynamic viscosity; Kinematic viscosity; Prandtl. Sodium Hydroxide 32% in aqueous solution Page 1 Issued: Revision No: 1 1. IDENTIFICATION OF THE SUBSTANCE / PREPARATION AND OF THE COMPANY / UNDERTAKING 1.1. Product identifier Chemical type: Substance Name: Sodium Hydroxide 32% in aqueous solution Trade name: caustic soda EC index no: 011-002-00-6 EC no: 215-185-5 CAS No.: 1310-73-2. Sodium Hydroxide, 50% w/w Safety Data Sheet according to Federal Register / Vol. 58 / Monday, March 26, 2012 / Rules and Regulations. Sodium Hydroxide, also known caustic soda, is an inorganic compound with formula NaOH. The specific gravity of 50% NaOH is 1.5372. Sodium Hydroxide also has a very high freezing temperature and can begin solidifying around 45 degrees F. It is highly soluble in water and readily absorbs moisture and carbon dioxide from the air. Sodium Hydroxide is. A modified commercial (Setaram C80) calorimeter has been used to measure the isobaric volumetric heat capacities of concentrated alkaline sodium aluminate solutions at ionic strengths from 1 to 6 mol kg −1, with up to 40 mol.% substitution of hydroxide by aluminate, at temperatures from 50 to 300 °C and a pressure of 10 MPa.

Go To:Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyrightby the U.S. Secretary of Commerce on behalf of the U.S.A.All rights reserved.

QuantityValueUnitsMethodReferenceComment
Δfgas-197.76kJ/molReviewChase, 1998Data last reviewed in December, 1970
QuantityValueUnitsMethodReferenceComment
gas,1 bar228.47J/mol*KReviewChase, 1998Data last reviewed in December, 1970

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.

View plotRequires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K)2500. - 6000.
A49.46492
B7.000125
C-1.391757
D0.095206
E-0.256928
F-213.6706
G284.8609
H-197.7572
ReferenceChase, 1998
CommentData last reviewed in December, 1970

Condensed phase thermochemistry data

Go To:Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyrightby the U.S. Secretary of Commerce on behalf of the U.S.A.All rights reserved.

QuantityValueUnitsMethodReferenceComment
Δfliquid-416.88kJ/molReviewChase, 1998Data last reviewed in December, 1970
QuantityValueUnitsMethodReferenceComment
liquid,1 bar75.91J/mol*KReviewChase, 1998Data last reviewed in December, 1970
QuantityValueUnitsMethodReferenceComment
Δfsolid-425.93kJ/molReviewChase, 1998Data last reviewed in December, 1970
QuantityValueUnitsMethodReferenceComment
solid64.46J/mol*KReviewChase, 1998Data last reviewed in December, 1970

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.

View plotRequires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K)596. - 2500.
A88.34725
B-2.495103
C-3.013028
D0.862607
E0.042216
F-442.9350
G183.9320
H-416.8783
ReferenceChase, 1998
CommentData last reviewed in December, 1970

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.

View plotRequires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K)298. - 572.572. - 596.
A419.483786.02304
B-1717.7540.000000
C2953.5730.000000
D-1597.2210.000000
E-6.0468840.000000
F-517.8662-448.8512
G933.0738169.6281
H-425.9312-425.9312
ReferenceChase, 1998Chase, 1998
CommentData last reviewed in December, 1970Data last reviewed in December, 1970

Reaction thermochemistry data

Go To:Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyrightby the U.S. Secretary of Commerce on behalf of the U.S.A.All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

2 + = + +

By formula: 2HNaO + C2H3FO = C2H3NaO2 + FNa + H2O

QuantityValueUnitsMethodReferenceComment
Δr-56.15 ± 0.08kJ/molCmPritchard and Skinner, 1950liquid phase; Corrected for CODATA value of ΔfH; HF(100); ALS
Δr-177.kJ/molCmCarson and Skinner, 1949liquid phase; ALS
Heat

2 + = + 2 + 2

By formula: 2HNaO + C2H6O4 = H2 + 2CHNaO2 + 2H2O

QuantityValueUnitsMethodReferenceComment
Δr-293.3 ± 5.0kJ/molCmJenkins and Style, 1953solid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -292. kJ/mol; ALS

+ =

By formula: HNaO + C2H2O = C2H3NaO2

Specific heat calculator
QuantityValueUnitsMethodReferenceComment
Δr-208.2 ± 1.6kJ/molCmNuttall, Laufer, et al., 1971gas phase; ALS
Δr-197.3kJ/molCmRice and Greenberg, 1934gas phase; ALS

C2Na2 (cr) + 2 (l) = 2(1418) (solution) + (g)

By formula: C2Na2 (cr) + 2H2O (l) = 2(HNaO1418H2O) (solution) + C2H2 (g)

QuantityValueUnitsMethodReferenceComment
Δr-161.8 ± 1.5kJ/molRSCJohnson, van Deventer, et al., 1973Please also see Pedley and Rylance, 1977.; MS

C2HNa (cr) + (l) = (1418) (solution) + (g)

By formula: C2HNa (cr) + H2O (l) = (HNaO1418H2O) (solution) + C2H2 (g)

QuantityValueUnitsMethodReferenceComment
Δr-54.2 ± 0.8kJ/molRSCJohnson, van Deventer, et al., 1973Please also see Pedley and Rylance, 1977.; MS

3 + = CNa2O3 + + +

By formula: 3HNaO + C3H5ClO2 = CNa2O3 + C2H6O + ClNa + H2O

QuantityValueUnitsMethodReferenceComment
Δr-323.3 ± 1.7kJ/molCmDavies, Finch, et al., 1980liquid phase; Heat of hydrolysis; ALS

2 + = + + CNO.Na

By formula: 2HNaO + CBrN = BrNa + H2O + CNO.Na

QuantityValueUnitsMethodReferenceComment
Δr-234.6 ± 0.71kJ/molCmLord and Woolf, 1954solid phase; Heat of hydrolysis; ALS

2 + = + + CNO.Na

By formula: 2HNaO + CIN = INa + H2O + CNO.Na

QuantityValueUnitsMethodReferenceComment
Δr-193.9 ± 0.3kJ/molCmLord and Woolf, 1954solid phase; Heat of hydrolysis; ALS

2 + = + + CNO.Na

By formula: 2HNaO + CClN = ClNa + H2O + CNO.Na

QuantityValueUnitsMethodReferenceComment
Δr-277.5 ± 0.4kJ/molCmLord and Woolf, 1954solid phase; Heat of Hydrolysis; ALS

+ = +

By formula: C2HBr3O + HNaO = CHNaO2 + CHBr3

QuantityValueUnitsMethodReferenceComment
Δr-93.72kJ/molCmPritchard and Skinner, 1950, 2liquid phase; Heat of hydrolysis; ALS

+ = +

By formula: HNaO + C2HCl3O = CHNaO2 + CHCl3

QuantityValueUnitsMethodReferenceComment
Δr-102.8kJ/molCmPritchard and Skinner, 1950, 2liquid phase; Heat of hydrolysis; ALS

+ = +

By formula: HNaO + C2H5NO = C2H3NaO2 + H3N

QuantityValueUnitsMethodReferenceComment
Δr-45.6kJ/molCmCalvet, 1933solid phase; Heat of hydrolysis; ALS

C6H5NaO (cr) + (l) = (cr) + (cr)

By formula: C6H5NaO (cr) + H2O (l) = C6H6O (cr) + HNaO (cr)

QuantityValueUnitsMethodReferenceComment
Δr21.4 ± 3.6kJ/molRSCLeal, Pires de Matos, et al., 1991MS

C2H5NaO (cr) + (l) = (cr) + (l)

By formula: C2H5NaO (cr) + H2O (l) = HNaO (cr) + C2H6O (l)

QuantityValueUnitsMethodReferenceComment
Δr-5.7 ± 1.9kJ/molRSCLeal, Pires de Matos, et al., 1991MS

(cr) + (l) = (cr) + (l)

By formula: CH3NaO (cr) + H2O (l) = HNaO (cr) + CH4O (l)

QuantityValueUnitsMethodReferenceComment
Δr-6.5 ± 2.4kJ/molRSCLeal, Pires de Matos, et al., 1991MS

Gas phase ion energetics data

Go To:Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyrightby the U.S. Secretary of Commerce on behalf of the U.S.A.All rights reserved.

Data evaluated by:Edward P. Hunter and Sharon G. Lias

QuantityValueUnitsMethodReferenceComment
Proton affinity (review)1071.8kJ/molN/AHunter and Lias, 1998
QuantityValueUnitsMethodReferenceComment
Gas basicity1044.8kJ/molN/AHunter and Lias, 1998

References

Go To:Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyrightby the U.S. Secretary of Commerce on behalf of the U.S.A.All rights reserved.

Chase, 1998
Chase, M.W., Jr.,NIST-JANAF Themochemical Tables, Fourth Edition,J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Pritchard and Skinner, 1950
Pritchard, H.O.; Skinner, H.A.,The heat of hydrolysis of acetyl fluoride,J. Chem. Soc., 1950, 1099. [all data]

Carson and Skinner, 1949
Carson, A.S.; Skinner, H.A.,201. Carbon-halogen bond energies in the acetyl halides,J. Chem. Soc., 1949, 936-939. [all data]

Jenkins and Style, 1953
Jenkins, A.D.; Style, D.W.G.,The thermochemistry and pyrolysis of bishydroxymethyl,J. Chem. Soc., 1953, 2337-23. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Nuttall, Laufer, et al., 1971
Nuttall, R.L.; Laufer, A.H.; Kilday, M.V.,The enthalpy of formation of ketene,J. Chem. Thermodyn., 1971, 3, 167-174. [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J.,Ketene. III. Heat of formation and heat of reaction with alcohols,J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]

Johnson, van Deventer, et al., 1973
Johnson, G.K.; van Deventer, E.H.; Ackerman, J.P.; Hubbard, W.N.; Osborne, D.W.; Flotow, H.L.,J. Chem. Thermodyn., 1973, 5, 57. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Davies, Finch, et al., 1980
Davies, R.H.; Finch, A.; Gardner, P.J.,The standard enthalpy of formation of liquid and gaseous ethylchloroformate (C3H5O2Cl),J. Chem. Thermodyn., 1980, 12, 291-296. [all data]

Lord and Woolf, 1954
Lord, G.; Woolf, A.A.,The cyanogen halides. Part III. Their heats of formation and free energies,J. Chem. Soc., 1954, 2546-2551. [all data]

Pritchard and Skinner, 1950, 2
Pritchard, H.O.; Skinner, H.A.,The heats of hydrolysis of chloral and bromal, and the C-C bond dissociation energies in chloral and bromal,J. Am. Chem. Soc., 1950, 1928-1931. [all data]

Calvet, 1933
Calvet, E.,Mesures thermochimiques directes en chimie organique vitesses et chaleurs de saponification des amides. II.-Mesures effectuees et resultats obtenus,J. Chim. Phys., 1933, 30, 140-146. [all data]

Leal, Pires de Matos, et al., 1991
Leal, J.P.; Pires de Matos, A.; Martinho Simões, J.A.,J. Organometal. Chem., 1991, 403, 1. [all data]

Specific Heat Calculator

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018. [all data]

Sodium Hydroxide Specific Heat Capacity

Notes

Go To:Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References

  • Symbols used in this document:
    gas,1 barEntropy of gas at standard conditions (1 bar)
    liquid,1 barEntropy of liquid at standard conditions (1 bar)
    solidEntropy of solid at standard conditions
    ΔfgasEnthalpy of formation of gas at standard conditions
    ΔfliquidEnthalpy of formation of liquid at standard conditions
    ΔfsolidEnthalpy of formation of solid at standard conditions
    ΔrEnthalpy of reaction at standard conditions
  • Data from NIST Standard Reference Database 69:NIST Chemistry WebBook
  • The National Institute of Standards and Technology (NIST)uses its best efforts to deliver a high quality copy of theDatabase and to verify that the data contained therein havebeen selected on the basis of sound scientific judgment.However, NIST makes no warranties to that effect, and NISTshall not be liable for any damage that may result fromerrors or omissions in the Database.
  • Customer supportfor NIST Standard Reference Data products.